Etäisyys etäisyyteen ja siirtoon

Mikä on etäisyys?

Etäisyys määritellään skalaarimääränä, ts. Se jättää suunnan huomioimatta ja koskee vain kokoa tai suuruutta. Se on pisteiden välinen aika ja kuvaa, kuinka paljon maata tosiasiallisesti peitetään kahden tai useamman pisteen välillä. Kokonaietäisyys lasketaan lisäämällä kaikki välit yhteen.

Toisin kuin vektoriarvoissa, etäisyyttä ei koskaan ilmoiteta nuolella, koska lasketaan vain koko, suunta ei ole huolestuttava.

Etäisyys on fyysinen määrä, joka voidaan mitata, ja sillä on erityiset yksiköt, joko SI-yksiköt (metrijärjestelmä) tai englantilaiset yksiköt.

Tieteessä käytämme metrijärjestelmää, mittarin ollessa vakio pituusyksikkö. Mittari määritellään etäisyydeksi, joka valo kulkee 1 / 299,792,458 sekunnissa tyhjiössä.

Etäisyys kerrotaan nopeudella. Koska etäisyys liittyy sekä nopeuteen että aikaan, jos tiedämme kaksi näistä arvoista, voimme saada kolmannen.

  • Tämä tarkoittaa, että jos meillä on nopeus ja etäisyys, voimme määrittää ajan, ja
  • jos meillä on aikaa ja matka, voimme määrittää nopeuden.

Etäisyys voi olla vain positiivinen ja on ehdoton arvo. Kuljettu matka voi joskus myös olla suurempi kuin siirtymän arvo.

Etäisyys voidaan mitata myös käämitystä ei-suoraa viivaa pitkin. Sen ei välttämättä tarvitse olla lineaarista mittausta.

Kokonaietäisyys ei ole lyhin reitti, mutta kertyneet välimatkat, sillä ei ole väliä missä yksi alkaa tai päättyy. Kokonaismatka olisi sama riippumatta siitä, kuinka monta kertaa suunta muuttuu, joten voisi siirtyä etelään, pohjoiseen, itään tai länteen. Sillä ei olisi merkitystä, kun yksinkertaisesti lasketaan yhteen polku johdetun kokonaismatkan laskemiseksi.

Mikä on siirtyminen?

Siirtymä määritellään objektin sijainnin muutokseksi ottaen huomioon sekä sen aloitus- että lopetuskohta. Liike on suhteessa vertailupisteeseen, tässä suhteessa lähtöpisteeseen.

Siirtymä on vektorimäärä, jolla on sekä suuruus että suunta.

Fysiikassa siirtymä merkitään nuolella (vektori). Nuoli piirretään siitä kohdasta, josta objekti alkaa ja päättyy, kun kohde loppuu.

  • Nuolen tai vektorin pituus vastaa liikkeen suuruutta
  • kun taas nuoli itse osoittaa liikesuuntaan.

Siirtymällä voi olla sekä positiivisia että negatiivisia arvoja ja se voi olla jopa nolla.

  • Negatiivisia arvoja käytetään osoittamaan muutos vasemmalle. g. -1m
  • Positiivisia arvoja käytetään osoittamaan muutosta oikealle. Esim. 1m

Kyse on aseman muutoksesta lähtöpisteestä, ei välttämättä kuljettua reittiä. Siirtymä on lyhin etäisyys ja polku alusta loppuun. Helppo tapa osoittaa siirtymä on sitten vetää nuoli yksinkertaisesti lähtöpisteestä lopetuspisteeseen lyhyimmän reitin poikki.

SI-siirtoyksikkö on myös mittari, mutta toisin kuin etäisyys, se mitataan aina suoraa viivaa pitkin.

Koska siirtymä ottaa huomioon suunnanmuutoksen, se voi peruuttaa ajettavan matkan. Esimerkiksi, jos henkilö kävelee 10 m länteen ja kääntyy sitten ja kävelee takaisin 10 m itään, siirtymä on 0. Kävely täsmälleen samassa etäisyydessä vastakkaiseen suuntaan kumoaa kävetyn etäisyyden, joten siirtymää ei ole.

Kuitenkin, jos henkilö kävelee 20 m oikealle, suorassa linjassa, siirtymä on yhtä suuri kuin etäisyys, koska tässä etäisyys on lyhin tie ja oikealle, joten siirtymä on positiivinen arvo.

Kohde voisi liikkua ympyrämäisesti, mutta siirtymä olisi suora viiva lyhyimmän matkan päässä alusta loppuun.

Fysiikassa siirtymä kirjoitetaan Δx, missä Δ edustaa muutosta spatiaalisessa sijainnissa ja xO edustaa lähtökohtaa. Siirtymäkaava sitten olisi: Δx = xf - xO. Lopullinen asema esitetään x: lläf . Alkuperäinen lähtökohta aina vähennetään lopullisesta loppupisteestä.

Nopeus on keskimääräinen nopeus, ja se perustuu siten aseman muutokseen ajan muutoksen suhteen. Se on myös vektorimäärä, joten se lasketaan siirtona jaettuna ajanmuutoksella.

Mitä eroa etäisyyden ja siirtymän välillä on??

  1. Etäisyys on skalaarimitta, kun taas siirtymä on vektori.
  2. Siirtymä merkitään nuolella, kun taas etäisyyttä ei koskaan osoiteta nuolella.
  3. Etäisyys huomioi vain suuruuden, kun taas siirto ottaa huomioon sekä suuruuden että suunnan.
  4. Siirtymällä voi olla sekä positiivisia että negatiivisia arvoja, kun taas etäisyydellä voi olla vain positiivisia arvoja.
  5. Symbolia delta Δ käytetään siirtymään, kun taas näin ei ole etäisyyden tapauksessa.
  6. Etäisyyttä voidaan käyttää tietyn ajan nopeuden laskemiseen, kun taas siirtymää voidaan käyttää nopeuden laskemiseen tietyn etäisyyden muutoksen (siirtymä) ajan myötä.
  7. Siirtymä mitataan aina suoraa tietä pitkin, kun taas etäisyys voidaan mitata ei-suoraa tietä pitkin.

Taulukko, jossa verrataan etäisyyttä ja siirtymää

ETÄISYYS Uppouma
Onko skalaarimittaus Onko vektorimittaus
Koskaan osoitettu nuolella Merkitty nuolella
Harkitsee suuruutta Harkitsee sekä suuruutta että suuntaa
Voi olla vain positiivisia arvoja Voi olla positiivisia ja negatiivisia arvoja
Delta, Δ: tä ei käytetä symbolina Delta, Δ käytetään symbolina
Voidaan käyttää nopeuden laskemiseen Voidaan käyttää nopeuden laskemiseen
Voidaan mitata epäsuoraa polkua pitkin Mittaa aina suoraa tietä pitkin

Yhteenveto:

  • Etäisyys on skalaarimittaus, joka ottaa huomioon vain suuruuden. Suunta ei ole tärkeä.
  • Tavallinen metrinen mittayksikkö siirtymälle ja etäisyydelle on mittari.
  • Siirtymä tarkoittaa aseman muutosta, se on vektorimittaus, jossa nuolet käytetään osoittamaan sekä koko että suunta.
  • Siirtymä on lyhin etäisyys kahden pisteen välillä. Sillä voi olla negatiivinen, positiivinen tai nolla arvo.
  • Etäisyys liittyy aikaan ja nopeuteen, joten nopeus voidaan määrittää, jos tiedämme etäisyyden ja ajan.
  • Nopeus on muutos nopeudessa, ja se voidaan laskea siirtymästä.